Ultrasonic flow meter working principle - Doppler effect
Ultrasonic flow meter working principle - Doppler effect
This Doppler effect, also known as Doppler shift, is a well-known phenomenon in everyday life that you can experience when you hear an ambulance with blaring sirens passing by. You may have noticed that the tone of the siren appears higher when the ambulance approaches you (higher sound frequency), suddenly becoming lower as the ambulance passes by and moves away from you (lower frequency). This is explained by the fact that sound waves are compressed to some extent when the ‘emitter’ moves towards you at a certain speed, resulting in a higher frequency and therefore a higher tone. Similarly, sound waves expand when the emitter moves away, giving a lower tone.
Something comparable occurs when measuring blood flow velocity in ultrasound imaging: the ultrasound wave frequency will change when moving particles like red blood cells in the blood vessel reflect these waves. Since change in frequency is directly linked to the velocity of the moving (and reflecting) particles, this frequency shift is a measure for the flow velocity of the reflecting (and moving) particles, and hence of the fluid containing these particles. This shows the limitation of the Doppler effect for liquid flow rate measuring: the liquid needs to contain particles - solid particles or entrained air bubbles - that reflect the ultrasound waves. This technique is therefore not useful for liquids with particles.